Is Wakamaru Alive and Well, or…?

Wakamaru

Wakamaru, the mutil-function service robot developed by Mitsubishi Heavy Industries close to a decade ago has never seemed to gain much traction or use outside of research labs and universities. While Wakamaru is extremely cute, most observers agreed that it didn’t really address a compelling customer need, especially at it’s USD$14,000 price point.

A tweet earlier today by @rani_chocobreak seems to provide visual confirmation that Wakamaru may have reached the end of its rope. According to the tweet, there are quite a few Wakamaru robots stored in the garbage collection area at an unnamed Japanese university.

Share and Enjoy:
  • Facebook
  • Twitter
  • Reddit
  • email
  • LinkedIn
  • Slashdot
  • StumbleUpon
  • Google Bookmarks
  • Digg
  • del.icio.us

NTV Set to Repeat Real Robot Battle TV Special (Video)

Real robot battle

No specifics yet, but NTV has posted a promotional banner on their website advertising the 2014 Real Robot Battle competition. Last years event, which resulted in a 2+ hour television special, turned out to be extremely popular, and the company is hoping to repeat that success and perhaps even turn it into an annual event.

Assuming that the rules haven’t changed from 2013, anywhere from six to eight teams will field massive robots over 2 meters tall to battle it out in the ring. Each robot utilizes a wheeled mobility platform of their own design, but from the knees up the competitors are quasi-humanoid and powerful enough to inflict significant damage on each other. 

This should give you an idea of how big these robots really are:

Share and Enjoy:
  • Facebook
  • Twitter
  • Reddit
  • email
  • LinkedIn
  • Slashdot
  • StumbleUpon
  • Google Bookmarks
  • Digg
  • del.icio.us

Japanese Government Plans to Stimulate Low Cost Robot Use

Strategic support  the government  Yomiuri Shimbun low cost robot the spread  photo  Yahoo News

Here’s the online version of the Yomiuri Shimbun article reporting on the Japanese government strategy to boost low-cost robots - http://headlines.yahoo.co.jp/hl?a=20140615-00050113-yom-bus_all.

Basically the information is the same as we reported in the previous post, though there are a few more specifics. The article also mentions a proposed robot competition, tentatively named “Robot Olympics”, the government plans to stage in conjunction with the Tokyo Olympics and ParaOlympics in 2020. Needless to say the IOC will make them come up with a different name as it has in the past with other robot events.

Share and Enjoy:
  • Facebook
  • Twitter
  • Reddit
  • email
  • LinkedIn
  • Slashdot
  • StumbleUpon
  • Google Bookmarks
  • Digg
  • del.icio.us

Japan Robot Stocks Surge on Rumors of Government Initiative

CYBERDYNE

Japanese robot stock prices surged in Tokyo when the market opened Monday morning boosted by a report that the Japanese government plans to actively promote the sector in conjunction with the 2020 Olympics.

Share prices of Kikuchi Seisakusho, Cyberdyne, Kawada Technologies, Harmonic Drive Systems, and Hihaisuto Seiko all responded positively when the Yomimuri Shimbun newspaper reported that the government will support the dissemination of low cost robots. The initiative appears to be focused on the manpower shortage in dealing with Japan’s ageing population, nursing care, agriculture, disaster response, infrastructure inspection, and more traditional factory automation applications.

The robot market is expected to expand from 700 billion yen in 2012 to about 2.4 trillion yen by 2020 when the Tokyo Olympics take place. More detailed information on the government’s plans to stimulate growth in the robotics market is expected to be announced later this month.

Related link: Japanese Robot Stocks Surge

Share and Enjoy:
  • Facebook
  • Twitter
  • Reddit
  • email
  • LinkedIn
  • Slashdot
  • StumbleUpon
  • Google Bookmarks
  • Digg
  • del.icio.us

Softbank/Asratec V-SIDO Press Conference Photo Gallery

140611 V SIDO 11 | Flickr  Photo Sharing

Asratec, a wholly owned subsidiary of SoftBank held a press conference in Tokyo announcing V-SIDO, an innovative operating system for robots that incorporates functionality to protect the robot and humans while making development easier for robot designers. They also demonstrated the ASRA C1 reference model humanoid robot.

 

Share and Enjoy:
  • Facebook
  • Twitter
  • Reddit
  • email
  • LinkedIn
  • Slashdot
  • StumbleUpon
  • Google Bookmarks
  • Digg
  • del.icio.us

Intel Jimmy – 21st Century Robot Project – Andrew Alter Interview – Part 2

intel jimmy robot

Developing a new humanoid robot like Intel’s Jimmy isn’t a trivial task by any stretch of the imagination, yet they were able to quickly bring the robot to the debut stage in record time. I was curious about how they were able to achieve so much so fast, and Andrew Alter, the Lead R&D Engineer at Trossen Robotics explained how Jimmy leverages Open Source technology, like the DARwin-OP Project, and benefits from advice/assistance from other leading humanoid guru’s.

Lem: What’s the difference between this robot and the Darwin-OP?

Andrew: The robot itself is a derivative of the Darwin-OP project. Part of the goal of the original Darwin-OP project, which was funded by an NSF grant, was to build an open source extensible humanoid platform.

The Darwin software framework provides an amazing starting point and features the best open source humanoid robotics code out there. However its fairly complex and so not many people outside of university environments are doing a lot with it to further development. Plenty of teams who compete using them in RoboCup, but people actively developing and expanding the open source project are somewhat rare (or at least, not many are publishing their work, which is understandable because of the competitive nature of Robocup!)

I took the framework and have been working for the last 6 months in conjunction with Intel, USC, Olin College, and Wayne Losey- (as well as my mentor Rob Farrell, whose sage advice and wisdom I have to thank for leapfrogging me into humanoid robotics) to advance the code.

Lem: Is the code and functionality continuing to evolve?

Andrew: We are adding more features, code comments, and documentation (code comments are largely non-existent), and most importantly a REST based API which will expose the higher level functions of the robot so that we can get more developers onboard. 

Lem: Sounds like the code is really complex.

Andrew: The stock code essentially is at a Masters of CompSci level as it stands, so were hoping to make it a lot more accessible to people. They won’t have to dig into the core code, unless they want to.

I've also made it more scalable for larger or smaller size humanoid robots by more easily exposing and documenting the parameters within the code where this can be modified. Lastly, we've made the code to be more flexible when it comes to OS and CPU compatibility.

I've done testing on ARM based ODROID boards using Xubuntu, the 64bit Intel NUC running Ubuntu 14.04 and Yocto OE Linux, and the Minnowboard, and open source Atom based board from Intel (same OS selection as the NUC).

The Yocto Project is very interesting, providing a development framework to deploy highly-customized OpenEmbedded Linux OSs. We have a 'Meta-21CRobots' Yocto layer which tells the Yocto IDE exactly how to configure the OS for one of our robots, and is more or less agnostic to the CPU hardware you're using. This is a huge step in creating a unified OS architecture for us to develop on.

Lem: Comparing Jimmy to the original concept units I saw at the World Maker Faire in New York last September, it looks like there are a lot of changes.

Andrew: Hardware wise, everything has been completely redesigned from scratch. New 5052 custom aluminum frame components, torso, head, electronics, etc.

The Jimmy robot is literally over 3x as big as a Darwin, standing 68cm tall and weighing in at 6kg. The servos used in the legs are the top-of-the-line MX-106T as opposed to the MX-28Ts used on the Darwin- almost 3x the torque. 

Lem: 3D printing played a big role in Jimmy’s design also.

Andrew: We designed the 3D printed shells to be easily modifiable so users can customize the appearance.

Lem: How does Jimmy compare to DARwin-OP in terms of CPU and other electronics?

Andrew: The Darwin currently runs a fairly outdated Intel Atom single core 1.1ghz processor with 1gb of ram (think original netbook). The Jimmy research humanoid comes stock with a quad core i5 CPU with 4gb of ram, 32gb SSD, and WiFi/Bluetooth/gigabit/usb3.0.We're replacing the CM-730 with an completely open-source Arbotix-PRO, which will feature an upgraded Cortex M4 w/ integrated floating point math and gigabit ethernet. 

Lem: It sounds like Jimmy will literally run rings around DARwin-OP...

Andrew: Performance wise the robot is about twice as fast, has a much larger payload capacity, and can run for 60-90 minutes. The Darwin ran for 15-20 on average as a point of comparison. We can stably walk about 30cm/sec, with bursts up to 50cm/sec (though users must be very careful of inertia during acceleration/deceleration at these speeds). 

Overall we’re standing on the shoulders of giants to improve an already amazing platform. The Darwin-OP project provided such a great leaping point, and projects like this are exactly why the open source robotics initiative is needed.

Stay tuned for Part 3….

Share and Enjoy:
  • Facebook
  • Twitter
  • Reddit
  • email
  • LinkedIn
  • Slashdot
  • StumbleUpon
  • Google Bookmarks
  • Digg
  • del.icio.us